RESOLUTION NO. 18-35

A RESOLUTION TO ALLOW A RETAINING WALL AS A REVOCABLE LONG-TERM RIGHT-OF-WAY OBSTRUCTION AT 716 4TH AVENUE, OREGON CITY, CLACKAMAS COUNTY, OREGON

WHEREAS, the on-street parking along the 4th-Ave frontage of 716 4th Ave ("PROPERTY") (see 'Exhibit A - Site Map') is limited by topography and slopes adjacent to the pavement; and

WHEREAS, the pavement width of approximately 22 feet along the 4th Ave frontage of the PROPERTY is reduced in effective width when cars are parked along the street – with its limited on-street parking – creating a potential access problem for fire apparatus; and

WHEREAS, the owner of the PROPERTY has proposed construction of a two-foot tall and 54-foot long engineered rockery retaining wall approximately 6 feet from the edge of pavement along the PROPERTY frontage on 4th Ave ("WALL") (see 'Exhibit B – Engineered Wall Plan'); and

WHEREAS, Public Works finds that the use of the on-street parking created by the wall will not limit sight distance to or from intersecting Blanchard Street; and

WHEREAS, Oregon City Public Works staff has determined that the proposed WALL will not adversely impact the right-of-way; and

WHEREAS, a Maintenance and Release Covenant has been executed for the WALL (see 'Exhibit C – Maintenance and Release Covenant'); and

WHEREAS, the Oregon City Municipal Code 12.04.120 requires that permanent obstructions in a public street (or alley) right-of-way be approved by the City Commission by passage of a resolution; and

WHEREAS, following passage of this resolution, Oregon City Public Works will issue a "Revocable Long-Term Right-of-Way Obstruction Permit", RWOBS-18-00019, which includes a covenant for maintenance of the WALL (see 'Exhibit C – Maintenance Covenant').

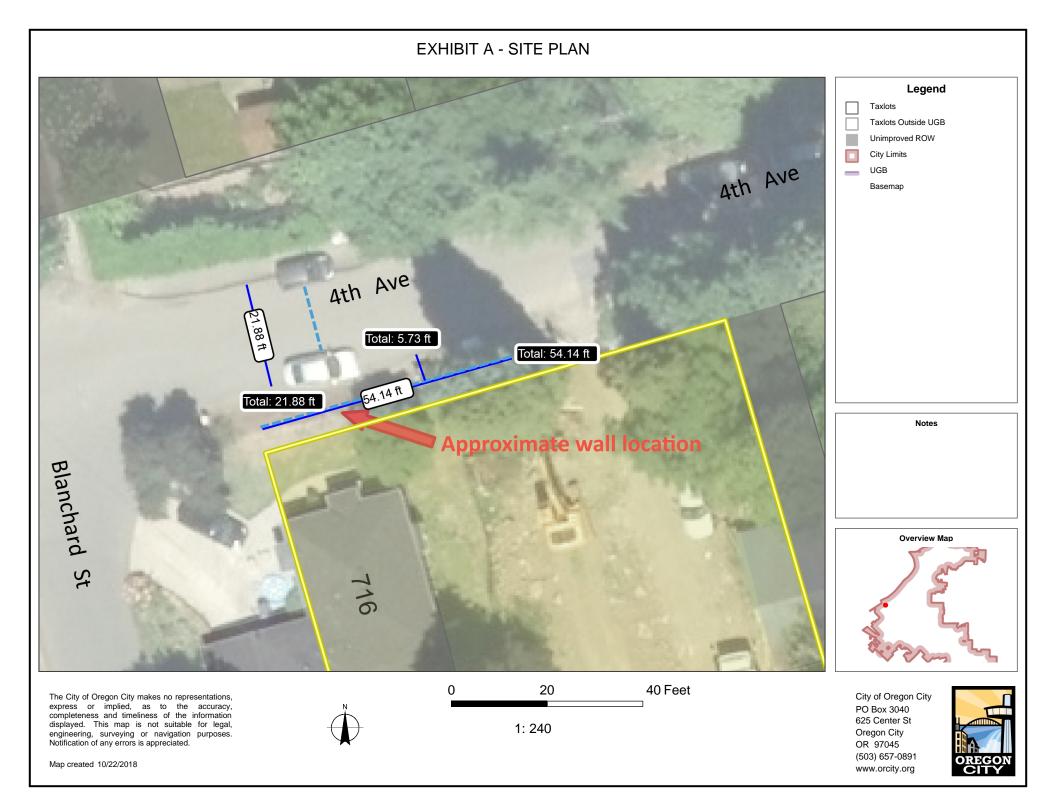
NOW, THEREFORE, OREGON CITY RESOLVES AS FOLLOWS:

Section 1. Authorize the City Engineer to issue a Revocable Long-Term Right-of-Way Obstruction permit, RWOBS-18-00019, at 716 4th Avenue for design, construction, and maintenance of the WALL by the PROPERTY owner.

Section 2. This resolution shall take effect immediately upon its adoption by the City Commission.

Resolution No. 18-35 Effective Date: November 7, 2018 Page 1 of 2 Approved and adopted at a regular meeting of the City Commission held on the 7th day of November 2018.

DAN HOLLADAY, Mayor


Attested to this 7th day of November 2018:

Kattie Riggs, City Rec der

Approved as to legal sufficiency:

City Attorney

Resolution No. 18-35 Effective Date: November 7, 2018 Page 2 of 2

SEC

de a

Symons Engineering Consultants, Inc.

12805 S.E. Foster Road Portland, OR 97236 (503) 760-1353 Fax 762-1962

MEMO

<i>TO:</i>	Ron Bistline	DATE:	September 19, 2018
FIRM:	716 4 th Street Oregon City, OR		
FROM:	Dan Symons		
PROJECT:	2' Gravity Wall in ROW	PROJECT No:	15-08

At your request I have reviewed a 2' high rockery wall proposed in 4th Street in front of the above address. If the wall is constructed in accordance with and, at a minimum, to meet or exceed the attached requirements then the installation shall be considered in general conformance with industry standards.

	neering Co	nsultant	s, Inc.			AVITY				Project:	- Carlo C
12805 SE Fos	~~~					wity Boulde	r			Project #	<u>#: 15-08</u>
Portland, OR					GW	= 2 FT	8			Date:	9/19/18
503-760-135	3, fax: 762-	1962				_				Sp⊯	Z GRADE
								13	" 1	SLOPE	GRADE
								Wt		B	ví [≆
Retaining Wa	Address of Concernation and Concernation						1				
W	= 1.5	ft	Wall Base	Width			Î	_1 (米)		4
Hv	v 2	ft	Wall Ht				(C) (P) 西				ĺ
ні	= 3	ft	Grade Slop	oe Soil Ht		┨ ₌	9	BATTER BATTER)		
Ht	= 0.5	ft	Toe Depth	Below Gra	ade	N	≥ ‴		<u> </u>	Rv	17
Pb	= 1500	psf	Allowable	Soil Bearin	g	- ``-	L.	Rb1	Db		I X
Pp:	= 300	Psf/ft	Passive So	il Pressure		1					1~1
f=	= 0.6	8	Soil Frictio			1		Ra Da	-	4	Rh N
Ws	= 120	pcf	Soil Unit W	/t		GRADE				H3	
Wr:	- 145	pcf	Rock Unit Wt			t "•"	t _{Rp} 1,	$-(\gamma)$	ľ	<u> </u>	
Br=	- 6	<u>.</u>	Wall Batte	r of Face		-1 ~	-	LA A		E	<u>Y</u> _
Sp=	-	2	Grade Slop								
] ^{™®®®®®} ≣®®®®®	<u></u>	1			-		R	0	HEEL	
ctive Soil Pre	ssure from	Annen	dix A Chart			-	휜	Wa Wb=	Wt_		
<u>β</u> =		deg	Slope Angl	۱	· · · · · · · · · · · · · · · · · · ·	-	1/3 (Ht -1)	W	-		
·	·						<u>ا ت</u>				7
H=		ft	Retained V	vali Ht	H = Hw + I	Ht	<u> </u>	18"			ļ
H1/H=	-		Ht Ratio	l			<u> </u>				
Kh=	-732 (C)E300 (C)S30 (C)S20 (C)	20	Horizontal								
Kv=	27	psf/ft	Vertical Ac	tive Soil Pr	essure		<u>(</u>]	-70":2	<u>,</u>		
	l		[<u> </u>	ļ	for 1 65	ω_{\perp}		
Active Soil Pro	1	· · · · · · · · · · · · · · · · · · ·	<u> </u>			1	L	THICK	-3/4	<u>+(-)</u>	
Rh=	0.19	kips	Horizontal	Force		Rh = (1/2)*	*Kh*H^2	CRUSH	5D		
Rv=	0.08	kips	Vertical For	rce		Rv = (1/2)*	'Kv*H^2	ROCK B	450	 هد ۲۶	
											[
verturning N	loment abo	out Heel	of Wall:			1					
H/3=	0.83	ft	Moment Ar	m				ANG	1.1	AR	
OM=	0.16	k-ft	Overturnin	g Moment		OM = Rh*(H/3) ,		A		<u>}</u>
				-	1	1		- 5704	IFS	56	SII BE
ertical Reacti	on Force F	rom Bou	lder Rock W	/t:			·····				Care Late
Wt=	1.08	· · · · · · · · · · · · · · · · · · ·	Top width c			Wt = Wb		SFIR	1.7	VET	
Wa=	0.42	-	Wall Batter		th	Wa = H/Br		and the set from		6 alertan	· /
Wb=	1.08		Wall Base V		1	Wb = W - V		LAND	المستقر	ACI	20 70
Ra=	0.08	kips	Batter Verti		۱	Ra = (1/2)*		<u> </u>		-1 6 3.	
Rb=	0.39	1	Base Vertica			Rb = Wb*H		FASTI	17 50	EI	12.3
R=	0.47		Vertical Res	*****		R = Ra + Rb		ENSU	<u> </u>		ILL
	Q.~+7	κiμa –	yer acor nes			n – na T NJ		INTE	121		
						i i		117121	<u> </u>	1C.K	
cistivo Mom	ont about I		A/11-								~~~~
sistive Mom	· · ·					D= = (4 10)+	Ma () M	Ala			
Da=	1.22	ft	Moment Ar	~~~~~~		Da = (1/3)*		NO 11	977	ERLY	142 142
Da= Db=	1.22 0.54	ft ft		~~~~~~		Db = (1/2)*	Wb	NO 11	977	ERA	2/12
Da= Db= X=	1.22 0.54 0.99	ft ft OK	Moment Ari Moment Ari	m		Db = (1/2)* X = (OM + F	Wb	NO // *Db)/R 52/	97) FE	ERA AG B	1/12
Da= Db=	1.22 0.54	ft ft OK	Moment Ar	m		Db = (1/2)*	Wb	NO 11	97) PE	ER/Y 9 <i>G B</i>	1/12 1/12 1 1
Da= Db= X= RM=	1.22 0.54 0.99 0.46	ft ft OK k-ft	Moment Ari Moment Ari	m		Db = (1/2)* X = (OM + F	Wb	NO 11	977 P F 1 A	ER/S 4 <i>G B</i> V	142 7 7 0105
Da= Db= X= RM= erturning Fa	1.22 0.54 0.99 0.46 ctor of Safe	ft ft OK k-ft ety:	Moment Ar Moment Ar Resistive Mi	m oment		Db = (1/2)* X = (OM + F RM = R*X	Wb la*Da + Rb	NO 11 *Db)/R 521 MI/HI/	97) PE 1A	ERA 4 <i>G B</i> - V	42 7 0105
Da= Db= X=	1.22 0.54 0.99 0.46 ctor of Safe	ft ft OK k-ft ety:	Moment Ari Moment Ari	m oment		Db = (1/2)* X = (OM + F	Wb la*Da + Rb	NO 11 *Db)/R 521 MI/HI/	972 PF 7A	ER/5 4 <i>G B</i> V	42 7 01 D S
Da= Db= X= RM= verturning Fa OM F.S.=	1.22 0.54 0.99 0.46 ctor of Safe 2.95	ft ft OK k-ft ety:	Moment Ar Moment Ar Resistive Mi	m oment		Db = (1/2)* X = (OM + F RM = R*X	Wb la*Da + Rb	NO 11 *Db)/R 521 MI/HI/	972 PE 1A	ER/X 4 <i>G B</i> V	42 7 01 D S
Da= Db= X= RM= verturning Fa	1.22 0.54 0.99 0.46 ctor of Safe 2.95	ft ft OK k-ft ety:	Moment Ar Moment Ar Resistive Mi	m oment		Db = (1/2)* X = (OM + F RM = R*X	Wb la*Da + Rb	NO 11 *Db)/R 521 MI/HI/	977 PE 1 A (ER/X 9 <i>G B</i> V	42 7 01 D S
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00	ft ft OK k-ft ety: OK kips	Moment Ar Moment Ar Resistive Mi	m oment ; Factor of	Safety	Db = (1/2)* X = (OM + F RM = R*X	Wb Ra*Da + Rb M/OM ≥ 1	NO // *Db)/R <u>52</u> / /////// .5	977 PE 1A	ERA 4 <i>G E</i> V	42 7 0105
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00	ft ft OK k-ft ety: OK kips	Moment Ar Moment Ar Resistive Ma Overturning	m oment ; Factor of Pressure a	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^	NO // *Db)/R <u>52</u> / /////// .5	977 PE 1A	5RA 9GE V	42 7 0105
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00 0.47	ft ft OK k-ft ety: OK kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil	m oment ; Factor of J Pressure a I Wt	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R Rp = (1/2)*1	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^	NO // *Db)/R <u>52</u> / /////// .5	972 PE 7A	5RA 9G B V	142 7 0105
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00 0.47 0.28	ft ft OK k-ft ety: OK kips kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal	m oment ; Factor of J Pressure a I Wt on	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R Rp = (1/2)*1	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv	NO // *Db)/R <u>52</u> / /////// .5	972 PE 2A	5.R.A. 9.G.B V	142 7 0105
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00 0.47 0.28 0.19	ft ft OK k-ft oK oK kips kips kips kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F	m oment ; Factor of J Pressure a I Wt on orce	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R Rp = (1/2)*1 P = Ra + Rb Rh = (1/2)*1	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2	*Db)/R <u>5</u> / /////// .5	972 PE 2A	5.R.A. 9.G.B V	42 7 0105
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00 0.47 0.28 0.19	ft ft OK k-ft OK ety: OK kips kips kips kips kips kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio	m oment ; Factor of J Pressure a I Wt on orce	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R Rp = (1/2)*1 P = Ra + Rb	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2	*Db)/R <u>5</u> / /////// .5	972 PE 7A	5RA 9G B - V	42 7 0105
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00 0.47 0.28 0.19 1.50	ft ft OK k-ft oK oK kips kips kips kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F	m oment ; Factor of J Pressure a I Wt on orce	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R Rp = (1/2)*1 P = Ra + Rb Rh = (1/2)*1	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2	*Db)/R <u>5</u> / /////// .5	972 PE 7A	5RA 9G B - V	42 7 0105
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 of Safety: 0.00 0.47 0.28 0.19 1.50 ssure:	ft ft OK k-ft ety: OK kips kips kips kips kips kips kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F Sliding Facto	m oment ; Factor of s Pressure a I Wt on orce or of Safety	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R P = (1/2)*1 P = Ra + Rb Rh = (1/2)*1 Sliding F.S. =	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2	*Db)/R <u>5</u> / /////// .5	972 PE 7A	5.C.) 9.G. D V	742 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= liding F. S.= P=	1.22 0.54 0.99 0.46 ctor of Safe 2.95 f Safety: 0.00 0.47 0.28 0.19 1.50 .ssure: 0.47	ft ft OK k-ft ety: OK Kips kips kips N.a. S O.K kips	Moment Ar Moment Ar Resistive Mo Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F Sliding Facto	m oment ; Factor of Pressure a I Wt on orce or of Safety	Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R Rp = (1/2)*1 P = Ra + Rb P = Ra + Rb	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2 = (f*P + Rp	*Db)/R <u>5</u> / /////// .5	972 PE 7A	5.C.) 9.G. E 	742 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= liding F. S.= liding Pre P= A=	1.22 0.54 0.99 0.46 2.95 f Safety: 0.00 0.47 0.28 0.19 1.50 ssure: 0.47 1.50	ft ft OK k-ft OK OK Kips kips kips Kips O.K Kips Kips Kips Kips	Moment Ar Moment Ar Resistive Mo Overturning Passive Soil Vertical Wal Sliding Frictic Horizontal F Sliding Facto	m oment ; Factor of Pressure a I Wt on orce or of Safety I Wt er Foot Wit	Safety Safety t Toe	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R OM F.S. = R Rp = (1/2)*I P = Ra + Rb Sliding F.S. = P = Ra + Rb A = W*(1 ft)	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2 = (f*P + Rp)	×Db)/R 5∠/ /////// .5 2 /Rh≥1.5	972 PE 7A	5R/5 9G B - V	
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= I Bearing Pre P= A= M=	1.22 0.54 0.99 0.46 2.95 f Safety: 0.00 0.47 0.28 0.19 1.50 	ft ft OK k-ft OK oK OK kips kips kips V.A. Sf F k-ft	Moment Ar Moment Ar Resistive Mo Overturning Passive Soil Vertical Wal Sliding Frictic Horizontal Fr Sliding Facto Vertical Wall Base Area pe Moment	m oment ; Factor of Pressure a I Wt on orce or of Safety I Wt er Foot Wit	Safety t Toe , , , , , , , , , , , , , , , , , , ,	Db = (1/2)* X = (OM + F RM = R*X OM F.S. = R OM F.S. = R Rp = (1/2)*1 P = Ra + Rb Sliding F.S. = P = Ra + Rb A = W*(1 ft) Ht-1)*Rp + (Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Ch*H^2 = (f*P + Rp) [1/2)*W*R	*Db)/R <u>5</u> / /////// .5	972 PE 7A	5 C / / 9 G E - V - V - V - V - V - V - V - V	
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= I Bearing Pre P= A= M= c=	1.22 0.54 0.99 0.46 2.95 if Safety: 0.00 0.47 0.28 0.19 1.50 	ft ft OK k-ft OK ety: OK Kips kips kips kips kips kips kips kips k	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictic Horizontal F Sliding Facto Vertical Wall Base Area pe Moment Arn	m oment ; Factor of Pressure a I Wt on orce I Wt I Wt er Foot Wid	Safety t Toe , , , , , , , , , , , , , , , , , , ,	$Db = (1/2)^*$ $X = (OM + F$ $RM = R^*X$ $OM F.S. = R$ $Rp = (1/2)^*I$ $P = Ra + Rb$ $Rh = (1/2)^*I$ $Sliding F.S. = R$ $P = Ra + Rb$ $A = W^*(1 ft)$ $Ht-1)^*Rp + (t)$ $C = (1/2)^*W$	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Ch*H^2 = (f*P + Rp) [[1/2)*W*Rt	×Db)/R 5∠/ /////// .5 2 /Rh≥1.5	972 <u>P</u> E 7 <u>A</u> 	5 C / / 9 G E - V - V - V - V - V - V - V - V	
Da= Db= X= RM= verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= I Bearing Pre P= A= M= c= I=	1.22 0.54 0.99 0.46 2.95 of Safety: 0.00 0.47 0.28 0.19 1.50 	ft ft OK k-ft OK ety: OK Kips kips kips kips kips kips kips kips k	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F Sliding Facto Vertical Wall Base Area pe Moment I Moment Arn Moment of I	m oment ; Factor of . Pressure a I Wt or of Safety or of Safety I Wt er Foot Wite n n	Safety t Toe , , , , , , , , , , , , , , , , , , ,	$Db = (1/2)^*$ $X = (OM + F$ $RM = R^*X$ $OM F.S. = R$ $Rp = (1/2)^*I$ $P = Ra + Rb$ $Rh = (1/2)^*I$ $Sliding F.S. = R$ $P = Ra + Rb$ $A = W^*(1 ft)$ $Ht-2)^*Rp + (t)$ $C = (1/2)^*W$ $I = (1/2)^*W$	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2 = (f*P + Rp (1/2)*W*R (1/2)*W*R	×Db)/R 5∠/ /////// .5 2 /Rh≥1.5	972 <u>P</u> E 7 <u>A</u> 	5 C / / 9 G E - V - V - V - V - V - V - V - V	
Da= Db= X= RM= Verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= I Bearing Pre P= A= M= c= I= Pt=	1.22 0.54 0.99 0.46 2.95 of Safety: 0.00 0.47 0.28 0.19 1.50 	ft ft OK k-ft OK ety: OK kips Kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F Sliding Facto Vertical Wall Base Area pe Moment Moment Arn Moment Arn Moment of I	m oment ; Factor of . Pressure a I Wt or of Safety or of Safety I Wt er Foot Wic n nertia Pressure	Safety t Toe , , , , , , , , , , , , , , , , , , ,	$Db = (1/2)^*$ $X = (OM + F$ $RM = R^*X$ $OM F.S. = R$ $CM F.S. = R$ $Rp = (1/2)^*I$ $P = Ra + Rb$ $Rh = (1/2)^*I$ $Sliding F.S. = R$ $P = Ra + Rb$ $A = W^*(1 ft)$ $Ht-1)^*Rp + (C = (1/2)^*W$ $I = (1/2)^*W$ $P = P/A - M$	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2 = (f*P + Rp (1/2)*W*R (1/2)*W*R (^3 (^3) 1*c/I	×Db)/R 5∠/ /////// .5 2 /Rh≥1.5	972 PE 7A	5 C / / 9 G E - V - V - V - V - V - V - V - V	
Da= Db= X= RM= Verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= I Bearing Pre P= A= M= c= I= Pt= Pt=	1.22 0.54 0.99 0.46 2.95 of Safety: 0.00 0.47 0.28 0.19 1.50 	ft ft OK k-ft OK ety: OK kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F Sliding Facto Vertical Wall Base Area pe Moment Arn Moment Arn Moment Arn Voment of I oe Bearing Heel Bearing	m oment Factor of Factor of Pressure a I Wt on orce I Wt or of Safety I Wt er Foot Wic er Foot Wic n nertia Pressure Pressure	Safety t Toe , , , , , , , , , , , , , , , , , , ,	$Db = (1/2)^*$ $X = (OM + F$ $RM = R^*X$ $OM F.S. = R$ $CM F.S. = R$ $Rp = (1/2)^*I$ $P = Ra + Rb$ $Rh = (1/2)^*I$ $Sliding F.S. = R$ $P = Ra + Rb$ $A = W^*(1 ft)$ $Ht-1)^*Rp + (C = (1/2)^*W$ $I = (1/12)^*W$ $P = P/A - M$ $Pt = P/A + M$	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2 = (f*P + Rp (1/2)*W*R (1/2)*W*R (1/2)*W*R (1/2)*W*R (1/2)*W*R	*Db)/R _5 ∠ / *Db)/R _5 ∠ / /////// .5 2 /Rh ≥ 1.5 /- (1/3)H*Rh + Rb(972 <u>P</u> E 7 <u>A</u> 	5 C / / 9 G E - V - V - V - V - V - V - V - V	
Da= Db= X= RM= Verturning Fa OM F.S.= ding Factor o Rp= P= f*P= Rh= liding F. S.= I Bearing Pre P= A= M= c= I= Pt=	1.22 0.54 0.99 0.46 2.95 of Safety: 0.00 0.47 0.28 0.19 1.50 	ft ft OK k-ft OK ety: OK kips kips	Moment Ar Moment Ar Resistive Ma Overturning Passive Soil Vertical Wal Sliding frictio Horizontal F Sliding Facto Vertical Wall Base Area pe Moment Moment Arn Moment Arn Moment of I	m oment Factor of Factor of Pressure a I Wt on orce I Wt or of Safety I Wt er Foot Wic er Foot Wic n nertia Pressure Pressure	Safety t Toe , , , , , , , , , , , , , , , , , , ,	$Db = (1/2)^*$ $X = (OM + F$ $RM = R^*X$ $OM F.S. = R$ $CM F.S. = R$ $Rp = (1/2)^*I$ $P = Ra + Rb$ $Rh = (1/2)^*I$ $Sliding F.S. = R$ $P = Ra + Rb$ $A = W^*(1 ft)$ $Ht-1)^*Rp + (C = (1/2)^*W$ $I = (1/2)^*W$ $P = P/A - M$	Wb Ra*Da + Rb M/OM ≥ 1 Pp*(Ht-1)^ + Rv Kh*H^2 = (f*P + Rp (1/2)*W*R (1/2)*W*R (1/2)*W*R (1/2)*W*R (1/2)*W*R	*Db)/R _5 ∠ / *Db)/R _5 ∠ / /////// .5 2 /Rh ≥ 1.5 /- (1/3)H*Rh + Rb(972 77 77 77 77	ELA AGE V b) - Ra(Da	

15.08 Lorda 20 Landscape Retaining Wall 716-4th Ave Oregon City NO SURCHARGE LOADS W/1 5' OF BACK OF VALL <CTK RUL 3'6" 8" MM. CLEAN DRAIN ROCK 中十十 2' 3" PERFORATED PRAIN V/ SOCK TO DAYLIGHT 6' 70 91

۰,

AFTER RECORDING RETURN TO:

City Recorder City of Oregon City P.O. Box 3040 Oregon City, Oregon 97045-0304

Tax Map No. / Lot No.: <u>3-1E-01AA</u> City Resolution No. / Adoption Date: <u>02700</u> City RW Permit No.:<u>RWOBS-18-00019</u> Street Address: <u>716 4th Ave</u>

Property Owner: David and Laura Stone

DECLARATION OF

COVENANT OF MAINTENANCE, RELEASE AND INDEMNITY

This COVENANT OF MAINTENANCE, RELEASE AND INDEMNITY ("Covenant") is made this <u>4th</u> day of <u>September</u>, <u>2018</u>, between <u>David and Laura Stone</u>, hereinafter referred to as "PERMITEE", and the CITY OF OREGON CITY, a municipal corporation of the State of Oregon formed pursuant to ORS Chapter 457 (the "City").

RECITALS

A. Permittee is the owner of certain real property located in the City of Oregon City, Clackamas County,
 Oregon, legally described on Exhibit A attached hereto and commonly known as
 716 4th Ave (address), (the "Property").

B. Permittee has applied for City right-of-way permit ("Permit") to maintain a permanent obstruction that is regulated and governed by Oregon City Municipal Code Chapter 12 *Streets, Sidewalks and Public Places*, Section 12.04.120 *Obstructions Permit required*.

C. The City has approved the Permit through adoption of Resolution No. <u>18-35</u> allowing the obstruction, being <u>two-foot tall retaining wall in the right-of-way</u> (the "Obstruction"), solely for purpose of the Property as shown in the "Site Plan" Exhibit B and first page of adopted "City Resolution" Exhibit C attached to this Covenant, contingent on Permittee providing a maintenance agreement and release to the City for any and all activities undertaken pursuant to the Permit issued by the City pursuant to Oregon City Municipal Code section 12.04.120 *Obstructions Permit required*, which requires Permittee to maintain and release the City from all damages resulting from the approved permanent obstruction in the right-of-way.

COVENANT

NOW, THEREFORE, Permittee covenants as follows:

In consideration of the issuance of the City Resolution and Permit, the undersigned ("Permittee") hereby covenants and agrees to the following terms:

1. <u>Covenant to Maintain, Repair and Remove</u>. Permittee shall, at their sole expense (no cost to the City), themselves or through qualified independent contractors, at all times maintain the Obstruction in

safe condition and good repair, and in compliance with all applicable state and local rules, regulations, and guidelines (including those adopted from time to time by the City) for the general public or remove the Obstruction as directed by the City (the City may at any time for any reason provide a thirty (30) day notice for removal of the Obstruction). Permittee or their representatives, shall obtain proper permits or approvals from the City and shall notify the City in writing 24 hours prior to any construction or repair activities for Obstruction. Furthermore, in the event Permittee fails to comply with this Covenant, Permittee hereby agrees that the City may remove or maintain said Obstruction and Permittee agrees to reimburse City for costs incurred by City when complying with this Covenant as described in Section 3 below.

2. <u>Failures to Perform Covenant.</u> Except in the case of emergency, if the City determines that Permittee is not in compliance with the Covenant described in Section 1, the City or its designee shall give the Permittee written notice to perform maintenance or repair or removal work specified in the notice. If such work is not performed to the City's satisfaction within 30 days of notice, Permittee hereby grants to the City, their employees, independent contractors and designees the right to perform any and all work required to bring said Obstruction into compliance with Section 1 and Permittee hereby agrees to reimburse City for performing work as described in Section 3 below. Permittee agrees that the City or its designee may perform any emergency repair work, as determined by City, without prior notice to Permittee and that Permittee will reimburse City for emergency work as described in Section 3 below.

PERMITTEE AND ALL SUCCESSORS AND ASSIGNS, AGREES THAT NONE OF THE CITY, ITS EMPLOYEES, INDEPENDENT CONTRACTORS, ASSIGNS OR DESIGNEES SHALL HAVE ANY OBLIGATION TO EXERCISE THEIR RIGHTS UNDER THIS SECTION 2 OR TO PERFORM ANY MAINTENANCE OR REPAIR OF OBSTRUCTION, AND THAT NONE OF THEM SHALL HAVE ANY LIABILITY TO PERMITTEE OR PERMITTEE'S SUCCESSORS OR ASSIGNS IN CONNECTION WITH THE EXERCISE OR NONEXERCISE OF SUCH RIGHTS, MAINTENANCE OR REPAIR OF OBSTRUCTION, OR FAILURE TO PERFORM THE SAME.

3. <u>Reimbursement.</u> If City exercises its right to maintain or repair or remove the Obstruction pursuant to Section 1 and Section 2, Permittee shall reimburse the City for all costs and expenses incurred in connection therewith within 30 days of receipt of an invoice. If any Permittee fails to pay invoiced amount within such period, such amount shall thereafter accrue interest at a per annum rate equal to prime rate of U.S. Bank (or its successor) plus five percent (5%). Such amount, together with any interest that has accrued, shall be a lien on the Property, which may be foreclosed in accordance with ORS Chapter 88. If Property is owned by more than one person, then each such Permittee shall be jointly and severally liable for payment of the amounts provided for in this Section 3.

4. <u>Release.</u> Permittee does hereby release and forever discharge the City of Oregon City, and its City Commissioners, officers, agents, volunteers and employees (collectively "Indemnitees") from any and all claims, liability, loss and demands of whatever kind or nature, either in law or in equity, arising from or relating to Permittee's activity described above and/ or otherwise authorized by the City's Decision. Without limiting the generality of the foregoing, Permittee understands and agrees that this Release discharges each of the Indemnitees from any liability or claim that Permittee may have against any of them with respect to any bodily injury, personal injury, illness, death, or property damage that may arise from or relate to Permittee's activity described above and/or otherwise authorized by the City's Decision. Permittee hereby expressly and specifically assumes the risk of injury or harm or damage to person or property with respect to the activity described above or otherwise authorized by the City's Decision, whether caused by the negligence of any of the Indemnitees or otherwise.

2

5. Indemnity. Permittee hereby agrees to indemnify, defend (with legal counsel acceptable to the Indemnitees) and hold the Indemnitees harmless from any and all claims, liability, loss, damage, cost or expense, including but not limited to attorney fees and court costs, that the Indemnitees may sustain or incur arising from or relating to Permittee's activity described above and/or otherwise authorized by the City's Decision. The foregoing indemnity shall include but not be limited to any claims, liability, loss, damage, cost or expense due to any bodily injury, personal injury, illness, death, or property damage arising from or related to Permittee's activity described above and/or otherwise authorized by the City's Decision. In the event that a suit, action, arbitration, or other proceeding of any nature whatsoever, including, without limitation, any proceeding under U.S. Bankruptcy Code, is instituted to interpret or enforce any provision of this Agreement, or with respect to any dispute relating to this Agreement, including, without limitation, any action in which a declaration of rights is sought or an action for rescission, the prevailing party shall be entitled to recover from the losing party its reasonable attorneys', paralegals', accountants', and other experts' fees and all other fees, costs, and expenses actually incurred and reasonably necessary in connection therewith, as determined by the judge or arbitrator at trial or arbitration, as the case may be, or on any appeal or review, in addition to all other amounts provided by law. This provision shall cover costs and attorneys' fees related to or with respect to proceedings in Federal Bankruptcy Courts, including those related to issues unique to bankruptcy law.

6. <u>Run with the Land</u>. The parties' rights and obligations contained herein shall run with the land and inure to the benefit of, and shall be binding upon, the City and Permittee and their respective successors and assigns (including, without limitation, subsequent owners of the Property or lots in the Property and any homeowner's association owning common areas in the Property).

7. <u>Interpretation</u>. The undersigned agrees that this Release is intended to be as broad and inclusive as is permitted by the laws of Oregon, and that if any portion of this Release is held invalid, it is agreed that the remaining portion shall continue in full force and effect.

8. <u>Enforcement.</u> In the event the City is required to enforce the provisions of this Covenant by legal action, the City shall be entitled to recover its attorney fees and court costs incurred in any such action and in connection with any appeals thereof.

9. <u>Jurisdiction</u>. In the event of any dispute between the undersigned and any or all of the Indemnitees, such dispute shall be governed by Oregon law and the exclusive jurisdiction for such dispute shall be the State courts for the State of Oregon, and the exclusive venue for such dispute shall be Clackamas County, Oregon.

10. <u>Authority.</u> In the event the undersigned is a limited liability company, corporation or other organization, the individual signing below represents and warrants he/she has authority to execute this Release on behalf of such organization.

11. <u>Binding Effect.</u> The waiver, release, indemnity and agreements of Permittee under this Release shall be binding upon Permittee's agents, guests, licensees, heirs, personal representatives, executors, successors and assigns.

12. <u>Compliance with Laws.</u> Permittee shall comply with all laws, ordinances and regulations, and the terms of any permit issued by the City, applicable to Permittee in connection with Permittee's activity described above.

NOTICE: No stamp or corporate seal is allowed over any typed information.

Individuals, general partnerships Corporation/limited partnership Company Name (above, if any) Corporation/Partnership Name (above) By: (signature) (signature Signer's Name, Title (if any) Signer's Name, Title By: By: (signature) (signature) Signer's Name, Title (if any) Signer's Name, Title (if any) (if executed by a corporation, affix corporation seal to the right) STATE OF OREGON **County of Clackamas** On this , before me, ___(day of Name of Notary Pi Day Year nura the undersigned Notary Public, personally appeared Printed Name of Signer (Title, Corporation) proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument, and acknowledged that they executed it. Stamp notary seal below WITNESS my hand and official seal. **OFFICIAL STAMP** SARA ELIZABETH BERARD Signature of Notary Public NOTARY PUBLIC-OREGON COMMISSION NO. 977333 My commission expires: MY COMMISSION EXPIRES AUGUST 6, 2022 Accepted on behalf of the City of Oregon City on the condition that the deed of dedication conveyed is free and clear from taxes, liens, and encumbrances.

By: John M. Lewis, Public W orks Director

City Recorder Kattie R

Page 4 of 7 -- City of Oregon City -- Permanent Obstruction in Right-of-Way Covenant of Maintenance, Release and Indemnity

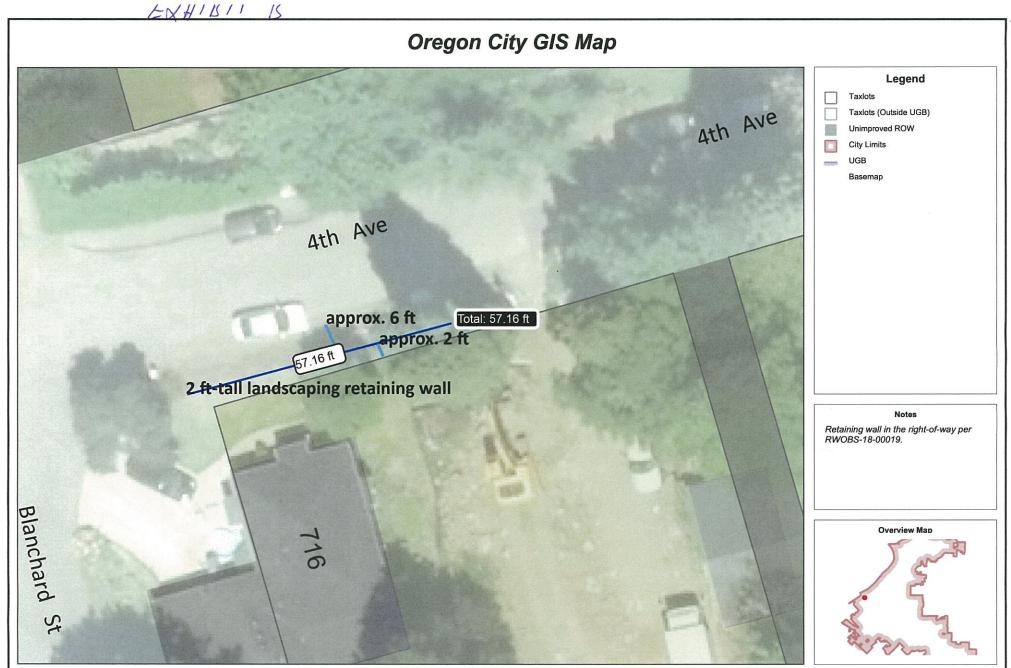

4

EXHIBIT A

Primary Address: 716 4th Ave, Oregon City, 97045 Jurisdiction: Oregon City Map Number: 31E01AA Taxlot Number: 31E01AA02700 Parcel Number: 00743173 Document Number: 2014-023198 Census Tract: 022602

LOTS 3 & 4 Block 13 of Canemah Plat 6 (6 Canemah LT 3&4 BLK 13)

The City of Oregon City makes no representations, express or implied, as to the accuracy, completeness and timeliness of the information displayed. This map is not suitable for legal, engineering, surveying or navigation purposes. Notification of any errors is appreciated.

1: 240

n

20

40 Feet

Map created 9/4/2018